- $ \\\int {\\\left[ {kf\\\left( x \\\right) \\\pm hg\\\left( x \\\right)} \\\right]} dx = kF\\\left( x \\\right) \\\pm hG\\\left( x \\\right) + C.$
- $ \\\int {\\\left[ {f\\\left( x \\\right) \\\pm g\\\left( x \\\right)} \\\right]} dx = F\\\left( x \\\right) \\\pm G\\\left( x \\\right) + C.$
- $ F'\\\left( x \\\right) = f\\\left( x \\\right),\\\forall x \\\in K.$
- $ \\\int {f\\\left( x \\\right).g\\\left( x \\\right)dx} = F\\\left( x \\\right).G\\\left( x \\\right) + C.$