- $ \\\left( S \\\right):{\\\left( {x + 1} \\\right)^2} + {\\\left( {y - 1} \\\right)^2} + {\\\left( {z + 1} \\\right)^2} = 3$.
- $ \\\left( S \\\right):{\\\left( {x + 1} \\\right)^2} + {\\\left( {y - 1} \\\right)^2} + {\\\left( {z + 1} \\\right)^2} = 1$.
- $ \\\left( S \\\right):{\\\left( {x - 1} \\\right)^2} + {\\\left( {y + 1} \\\right)^2} + {\\\left( {z - 1} \\\right)^2} = 1$.
- $ \\\left( S \\\right):{\\\left( {x - 1} \\\right)^2} + {\\\left( {y + 1} \\\right)^2} + {\\\left( {z - 1} \\\right)^2} = 9$.